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Let C[0, 1] be the space of all continuous functions defined on [0, 1] and U be
an n dimensional subspace of C[0,1]. A peak norm, or a-norm for 0 <a <1,
a-norm is defined by | f|.=Lsup {{, |/l dulu(4)=a, A=[0,1]}, where u
denotes the Lebesgue measure. We say pe U is a best a-norm approximant to f
from U if D(f)=|f—plla=inf{|f—ull,|ue U}. In this paper we shall study
[flas Dol f) and P (f)={peU| | f—plla=Dy(f)} as functions of « for fixed f.
We shall show their continuous dependence on o and differentiability with respect
to . © 2000 Academic Press
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1. INTRODUCTION

Let C[0, 1] be the space of all continuous functions defined on [0, 1]
and U be an n dimensional subspace of C[0, 1]. For 0 <a <1, the peak
norm, or o-norm is defined by

1
=y sup ] 171 da |y =a 4 < (0,11,

where p denotes the Lebesgue measure. We say p, € U is a best a-norm
approximant to f from U if

D(f)=f—pul=inf{||lf —ul,|ue U}.

a-norm and best a-norm approximation were introduced and discussed in
[4], and also in [6]. a-norms serve as a bridge between the classical
uniform norm and L' norm, because it is L' norm when « =1 and lim__,
[flle= 1Sl =maxg<,<; |f(x)|, the uniform norm of f. Best a-norm ap-
proximation has both an L!-type characterization theorem and alternating
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property [4]. A sufficient condition for the uniqueness of best a-norm
approximation is given in [6]: “U is an A-space and u(Z(u)) <a« for any
0#£ue U, where Z(u)={x | u(x)=0}.” This condition becomes that U is
an A-space when a=1 and U is a Chebyshev space on (0, 1) when a — 0.
Recall that an A-space guarantees the uniqueness of the best L!
approximation and a Chebyshev space guarantees the uniqueness of the
best uniform approximation. Recently the peak L? norms are studied in [5].
In this paper we shall study | f1|,, Du(f) and P(f)={peU]||f—pl«
=D,(f)} as functions of « for a fixed function f. We shall show their
continuous dependence on « and differentiability with respect to a.

2. CONTINUITY IN «

We begin with stating some known results:

THEOREM 2.1 [4,6]. Let feC[0,1], U, D,(f) and P,(f) be defined as
above. Then

(1) If0<pf<a<l, then

o
(FAIPES H.f\IﬂSE 11

and

D(f)<D4f) <% D)),

(2) If Uis an A-space and w(Z(u)) <a for any 0F£ue U, then there
exists a 0 >0 such that the best f-norm approximation of f is unique for all
p>a—0, which is denoted by py(f), and

;iqmapﬂ(f)=pa(f), 0<a<l,
and
plinf— Pa(f)=pi(f)
(3) If Uis a Cheyshev space, then

lim_ py(f) = po(f),

p—>0+

where po(f) denotes the unique best uniform norm approximant of f.
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We need some more notations.
Let A,(f) denote any a-norm norming set of f; i.e., u(A,(f))=o and

1
2 Lo =17

In what follows, we always choose A,(f) = A4 f) whenever a < f.
Let

b f) =inf{h | p{xe [0, 171 /(x)] > h} <a}.

It is worth noting that for any norming set A,(f)

(X [ >ho( )} = A f) = {x [ ()] = ho( 1)}
Let

E(f)={x[1f()=If1},

where | -| denotes the uniform norm.
Also, for simplicity, o —0(1) means oa—0%(17), and f’, (x) is
considered only for 0 <x <1 and f’_(x) is considered only for 0 <x < 1.

THEOREM 2.2. Let P,= P, (f). For 0<a <1, we have

lim sup inf {|p—qll} =

p—a pePy qeP,

Proof. Suppose that the above limit does not go to 0, then there exist
o, k=1,2,.. with |o, —a| < and p, € P, such that

. 1
inf {lg—pily > (1)
qe P,

Since {p,} is bounded, by compactness of a closed bounded set in a
finite dimensional space, there is a subsequence { pkj} converging to p.
Then, for 0 <a <1,

. . . . x .
If = ple=lim | /= p [l < lim max {1,} Lf =Pl
j— oo j— O(kj 7o

= lim D, (f)=Dd(f).

Jj— ©

The last inequality follows from Theorem 2.1. This means that p e P, and
it contradicts (1).
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For « =0 and p¢ P,

If =PIl > 1/ =gl =Do(f)

and there exist x, €[0, 1] and ¢, >0 such that

|f(x0) = p(xo)| > [/ — qll + 3¢.
By the continuity of f'and the fact lim, _, ., | Pr,— pl =0, there exist m >0

such that for j>m and |x —x,| < 1.

1
fX) =P () >1f =gl +&  and <

7
and then

1 = Pigllo, = IS =l + 20> L./ = qlla -
This contradicts that Px, ep, .
J

The next two lemmas show the continuity of %, (f— p) with pe P (f).
These results will be used in proving the differentiability of D (f).

Lemma 2.3, If f<a, then

sup {h(f—q)} < inf {hy(f—p)}.

qeP,(f) PEP(S)

Proof. For any p, e P, and pg e Py with f<a,

f=pal=aD(N)<[ 1S =pyl

’[Aa(f— P) A —pp)

= pal+ £ = py]

'[Aﬁ(f—Pp) Aa(f—Pﬂ) —A/f(f—P,g)

SBD(f) + (=) hy(f — pp)

< |/ = Pol + (= B) hy(f—pp)
Ap(f— 1)

lf = pol + (= B) ho( f = Pa)

’[Aﬁ(f— Py)

— (=) ho(f = po) + (=) hg(f = pp)
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<| = pal+] /= al
Ay(f —py) A~ p) — Ap(f—Py)

— (=) ho( f = po) + (=) hg(f — pp)
= |f = pal + (= B)hg(f = pp) = ol f = D).

A= pa)

LEMMA 2.4. Let 0<a<1 and fe C[0,1]. Then

im  sup {lh(f—q)— inf {h(f—p)}I}=0 (2)
Bat qePy(f) PEPLS)

and
lim  sup {|hy(f—q)— sup {h(f—p)}|}=0. (3)
B—a” qePy(f) PEPS)

Proof. By Lemma 2.3, for > a,

sup {lhg(f—q)— inf {h(f—p)}I}

q€ Py(f) PeP(S)

= sup { inf {|h,3(f—4)_ha(f_17)|}}

4 Py(f) peP(S)

and for f<a,

sup {|hy(f—q)— sup {h(f—p)}l}

g€ Pp(f) peP,(f)
= sup { inf {|hs(f—q)—h(f—Dp)I}},
4ePy(f) pePyf)
and

sup { inf {|hy(f—q)—h(/=pI}}

qePy(f) PePS)

< sup { inf {|hﬁ(f_Q)_hﬂ(f_p)|}}

7€ Pp(f)  peP,(f)

+ sup {lhg(f = p)—h(f =PI}

PEPS)

By Theorem 2.2, the first term of the above expression goes to 0 as f — .
Since P,(f) is a compact set and all functions in this set are continuous,
for every ¢ >0 there exists a 0 >0 such that |p,(x)— p,(y)| <e for any x,
ye[0, 1] with |x— y| <¢ and any p, € P,(f). Thus the second term of the
above expression goes to 0 too as ff— a.
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Thus,

lim sup { inf {|Ag(f—q)—h(f—p)I}}=0.

B—oa qgePy(f) pePSf)

COROLLARY 2.5. Let 0<a<1 and feC[0,1]. If h(f— p) have the
same value for all pe P,(f), then

lim  sup |hg(f—q) =h(f—p)=0.

B—a qePy(f)

When the best a-norm approximation is unique, i.e. P (f) is singleton,
then A,(f— p) of course has one value. However, if P (f) is not singleton,
h,(f — p) may be different for different p € P,( /). See Example 2 in the next
section.

3. DIFFERENTIABILITY IN «

THEOREM 3.1. Let fe€ C[0, 1]. Then, for 0 <a <1, | f||, is differentiable
with respect to o, and

d / —
=" e g
o o

Proof. Choose norming sets 4,(f) and Ag(f) such that 4,(f) < Ax(f)
if a<f, and Ay(f) = A,(f) if f<o Let A4B=(A4—B) U (B—A). Then

1A 1= 111
f—a

_(l/ﬁ) L;,,(f) |/ —(1/) SAa(f) |f]
= -

~(B=1a) [y oapin 1S+ send f—of min{1/B, 1/a} [ ) anyin 1/
- -

min{1/8, 1/a}
B —al

«|[ )+ | (G —ha( 1)
A () 445(S) A, (f) 445(S)

P L«m A Ag(f)

Lf1+
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Since A, (f) N Ap(f)=A(f) when a <B(=A4(f) when o= f), u(A,(f)
AAﬁ(f)) =|f—« and lim/)’—»oc I 1/(x)] _hoc(f)HAl(f)AAﬂ(f)zoz we have

fim Wa= W11y Ly BD= e
A,f) x x

Boa ﬂ — o o
The last inequality follows from the fact h,(f) < | f] .
THEOREM 3.2. Let fe C[0, 1], then

Hf\la HfH ¢ = I

o

0> lim sup

a—0 aHO

>—< inf {limsup et = Ly
xeEf) Lhs0,r>0 h
x+he[o,1]
lim sup w (x#O)}).
h—>0,h<0
x+he[0,1]

Proof. Since | fl,<|f|, the first two inequalities are obvious. For any
xo € E(f), let

S(xo + 1) — flxo)
h

N
= A.

lim sup

h—0,h>0
xg+he[0,1]

Then for any ¢ >0 there exists a J such that for 0 </h <9,

J(xo+ 1) — f(xo)
h

<Ai+e,

or

|f(x0 +R)| — 1/ (x0)]
h

>—1—e

Then, for a <9,

A (|f(x)|—|\f|\)=%f (17l =1/ (o))

o o [xg, xo+ ] [xg, xg+ o]

—é&.

>1f =1/l -,

o [xg, xg+a] X —Xp
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This shows
h) —
g WU R =S|
x—0 o8 h—>0,h>0 h
x+hel0,1]
The proof of
g Wm0 G ot =10
a—0 o h—0,h<0 h
x+he[0,1]

is similar. Combining these inequalities proves the theorem.
COROLLARY 3.3. Let feC[0,1].
(1) If {x|xeE(f) and either f' (x) or f'_(x) exists} # ¢, then

0> lim sup HfHa HfH APl VA

a—0 aHO o

= —( inf {/Z ()] [/ (1))

xe (/)

(2) Ifinf g {1/ () [/ ()]} =0, then
i W e = A1
1m

(] o

=0.

THEOREM 3.4. Let feC[0,1]. If both f' (x) and f'_(x) exist or is + o0
for any xe E(f), then

e VA Pl VAL
m
oa—0 o
_ 1 " O<xm1n {1 ()], 1~ (x)]} < 0,
) 2ZXEE(f)<f’+( | |f/ (.X)|>
=40 _inf {1/l L)1 =0,
€ E(f)
— o0 mln {|f+ ) 1/ ()]} = o0,

xeE

where f'_(0) is not considered if 0€ E(f) and f'.(1) is not considered if
le E(f).
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Proof. First, if E(f) contains infinite many points, then by compact-
ness, there exists x, € E(f) which is also an accumulation point of E(f).
Since both f"_(x,) (if xo #0) and f',(x,) (if x, # 1) exist, at least one of
them must be zero. Thus by Corollary 3.3

o 1l =171

a«—0 o

=0.

Now, we assume that E( f) contains only finite points x,, x,, ..., X. For
sufficient small « >0, a norming set of f can be expressed as

Af) = [S,, 4],

HC»

and | f(s; ) =1f(t)| =h(f), i=1, .., k—1. Also, for sufficient small «,

A if s;,=x,=0
4 (s1)|_{ha(f) it x>0
and
I/l if t=x,=1
= {ha(f) i o<l
Then
f_(x;)+ o(a) _Ss) =) sgn( f(x,)) ho( ) = I/l ’
Si—X; S;— X;
i=2,3,..,k, and i=1 if x; #0
and
f’+(x"+0(°":w:sg“<f‘ " a(f_ 71
X l:— X;

1 13

i=1,2,.,k—1, and i=k if x,#L
Solve for x;—s; and ¢, — x; from the above equalities and get

ho( ) =S _ 1 =Pal )
S (x)+o(a) |f(x)]+o(x)

ho(f) =1/ LA —2a(f)
S () +0(@) 174 (x)] + ola)

X

i— ;= —sgn(f(x;))

t;—x;= —sgn(f(x;))
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and

k
= ¥ Lm0+ (1))

k

=1 =R/ 2, (T IR o(a)>'

Then,
A Wy = A1 _

o

=l —
N

M= I DM

LA =171
n

(x —x;) sgn(f(x;))

5 X—Xx;

Sl =

j‘f J(x) = f(x)

—

Sl =

[ (r =y sen( e~

5 X—Xx;

—
1

AT (U (x) +o(@) + (1 (x) +o(a))))?

k 1 1
* LA Tl +o@ T +o<a>}
1
TS+ o(@) + (/5 (0] + o))’
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where 5, <x;” <x; and x,<x;" <t, whose existence follows from the Mean
Value Theorem for the integral. Thus,

o I L= U1 _ 1

is0 28w (VIO UI/Z(0)))

For the case that min, g {1/ (x)], |f_(x)|} =0, the proof is
similar.

The following example shows that | /]|, may not be differentiable at
a=0if /', (x) or f'_(x) does not exist for some x € E(f).

ExamMpPLE 1. Let

(o,

1
0<x<=
D)
| noto "o
AL FTT L
f(x):< n o
kZ ?<x<k2 ety n=L2
=1 =1
1o
i
T s
. 2 2n+2\X\k:1 A
121 1
I/l =Zk§,1 %=7 and f'_(1) does not exist.

Ifa=Y ., (1/25)=1/2", then

1 & 1 1kt1 1 1 1 1
”fH“:]/zn 2: <2k+1 Z 2: 2i+12<2k+1+_2k+2>2k+2>

k=n i=1
e (11 1 3 1
=2 kgn <4 2k+1<1_2k—1>+8 4k+1>
© /1 1 1 1 1 11
=2n — —_— = = -
kgn <4 2k+1 g 4k+1> 4 827
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Ta=Yp ., (12 —1/2"+2=1/2"—1/2"*2, then

1 © 1 1%z'1 1 1 1 1
|f|a=1/2,,1/2,,+2{k2 <2k+1 Z Z 2i+2<2k+1+2k+2> 2k+2>

11 <1"11 121
—,,Z+Z>}
227+2\4 & 2k T4 & 0K

1

r+2/© /1] 1 1 1 1 31
= P iy ety l vt Svl
3,2 \42 8 4 16 2" 32 4

11

24 2™

Iy

Thus, lim,_, o((| fll.— IL.£1)/) does not exist.

THEOREM 3.5. Let fe C[0,1] and 0 <a< 1. Then

tim 28PN Ly e oy — D)

foat f—a o pePyf)

and

_ 1
lim D/’(fﬁ)”"(f):( sup {h(f— p)} — Dulf)).
poo~ —« « PEPa(f)

If h(f — p) has the same value for all pe P (f), then D (f) is differentiable
with respect to o and

4 by () tim DA = D)

1
E e ﬁ o :&(hzx(fip)iDa(f))

Proof. For a<f, let p,eP, such that h,(f—p,)=inf,cp s
{h(f—p)} and by Lemma 2.4 we can choose pj € P, such that

ﬁlir{3+ hy(f—pp) =ho(f = Pa)- (4)
By Theorem 2.2, for each above p; one can find a p,g € P,(f) such that
ﬂlim+ ”ptx(ﬂ) _P/;H =0, (5)

and hence

ﬁlir{}+ ho( /= Pacp)) = 1ol f — Do) (6)
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Since P,(f) is a compact set and all functions in this set are continuous,
for every ¢ >0 there exists a 6 > 0 such that for any p, € P,(f) and any x,
ye[0,1] with |x—y| <9

|Po(x) = o) <,
and then by (5)

|25(X) = (V) < | Pacp)(X) = Papy( V) +2 | Pagsy— Ppll <e

for sufficient small 6 and 0 < ff—a <.
Thus, for every ¢ >0 there exists a J > 0 such that for any x € A4(f — ps)
— A, (f—pp) with o — ] <6

1A (x )| =hg(f—pp)l <e.
Also by (5)
Jim S = pap) ~ S = )| =0. (7)
Then
lim sup 1L/ (X) = Pagp(X)] = hg(f = Do)

Boat xedy(f—pp)—Af — pp)

< lim sup 11 () = pp(xX) [ = hy(f — pp)l

Bat xedy(f—pp—A(f—pp

+ﬂlir2+ 1Pas) — PﬂH+ hrn \hg(f — Pocpy) —hp(f—pp)l =

Then, by (4), (5), (6), (7), and (8)

| £ = Pl
Aﬁ(f—Pﬁ)—Aa(f—Pﬁ)

=(B—a) ho(f —pp) +f (If = psl = f = Pasy )

A/g(f P/;) Am(f 17/;)

(|f_pa(ﬂ)| _hﬁ(f_pa(ﬂ)))

+fAﬁ(f_pﬁ)_Aa(f_Pp)
+(B—a)hs(f — Pucp) —hp(f—Pg))
=(f—a) hg(f—pp)+o(f—a) 9)
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and

| A
Ag(f— 5) — A f — B)
=(B—)hf=P)+| (= al =Bl f = 7))
Ap(f— By — A f — B
= (B—a) h(f — po) +o(f—o). (10)

Then, by (9) and (10)

0= SIS =ppllp— 1S = Pullp)

- f=pel=] /=5l
Ag(f—pp) Ag(f—5,)

=| =gl +] /=yl
A(f—pp) Ag(f — pp) — A — pp)

SR AR =
Af— Dy Ag(f—Py) — A — P,)

| f = Pyl + g f = pp)(B—a) +o( f— )
A,(f— P/g)

I AR SRR ]
=(hp(f =pp) =hl [ =PI =)+ [ [ = pplla—aDy(f) +o(f—a)
= (hp(f = pp) = hol f — P — ) +0(f —).
From the above inequality and (4), we get

Ilf =psllg—Ilf = Pa 1

. [l 5 . _
0= lim = lim — (hy(f— —h,(f—p.))=0.
Jim, e Jim 2 b f = pp) = bl f = 7))
This shows
lim Hf_l’ﬂH/f_Hf_PaH/fzo. (11)
Boat ﬁ—O(.
Now,

D) =D /)= If=Pplg—Ilf = Pallp+ 1/ = Pullg—= Ilf = Palla  (12)
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and by Theorem 3.1

li "f_ﬁu“ﬁ_ |‘f,_pa|‘u_ha(f‘_ﬁu)_ ‘|f,_p7a|‘u
1m =
Boat f—a o

. D
lim =
Boat f—a o

Lt (=) = D).

X pePyf)

Similarly we can prove

tim 2A =D Lo = o - D)

B o f—a X peps)

The following example shows that 4,( f — p) may be different for different
PEPL])

ExamMPLE 2. Let

1, 0<x<} ix—g o 0<x<3
f(x)= 5 u(x) = 1 |
4 —4x, i<x<l, X—3, s<x<l,

and U=span{u}.

Then U is a unicity space of a-norm approximation for any o except
a=3 (see [6]). For a =3, all cu(x), 0<c<1 are best a-norm approxima-
tion of f from U and h,(f — cu) ranges from 3 to 1.

THEOREM 3.6. Let fe C[O0,1].

(1) If fand all ue U satisfy Lipschiz condition, i.e., there exists L >0
such that for any x, y€[0, 1]

Lf(x)=f(WI<Li|x—yl
and for each ue U, there exists L,>0 such that for any x, ye[0, 1]

|u(x) —u(p)| <L, [x—yl,
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then the exists M >0 such that

|Do(f) —Do(f)| < Mo..
(2) If Po(f)={po} is singleton, u'(x)e C[0,1] for all ue U, and
f'(x)— po(x)=0 for all xe E(f— p,), then
lim

a—0 [e4

Proof. Since Jp<o<1 Po(f) is a bounded set in a finite dimensional
space and each of them satisfies Lipschiz condition, we can find a number
B> 0 such that for any pe Up<o<1 Po(f) and |x — y| <a

[p(x) —p(y)| < Bo.

Let M =L+ B and then

[Do(f) = Do( /)| = Do(f) = Do( f)
=If=poll = If = pull + 1f = Pal = L = Pulla
S =2l =1 = Polla < 1S = Poll = 2(f = o) < Mot

This proves the first part of the theorem. Now, for the second part, by
Theorem 2.1 we have

By Theorem 2.2, we can choose p,eP,(f) for each a so that
lim,_, o | p.— Poll =0. Since they are all from a finite dimensional space and
have continuous derivatives, lim,_, ., | p, — poll =0. By a property of best
uniform approximation there exists x, € E(f— p,) such that || f— pol =
|/ (x0) = Po(x0)| < [f(x0) — PalXo)I-

Then

If = poll = IlLf — Palla

o

<o —peol = [ 1=pl]

1 X+
< [ (U0 = palxo) = (f(3) = pu(x))])

o B
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1 Xp+ o
<5 f (1(/(x0) = Po(x0)) — (f(x) — po(x))])

o X

1 Xg+a
5 [ Uparo) = polxo)| = 1palx) = pol ).

o Xo

For small «, the first term

1 X+ o
) f (|(f(xo)_Po(xo))_(f(x)_Po(xm)‘
<oy [UI= )=l =)
Xg <X <X+ o

It goes to 0 by the assumption that the derivatives of f — p, are all zero at
any x € E(f). The second term

1 rxot+o
S U0 = Polx)) = (ul ) = pol))])

A" x,

(Po(X) = Po(x)) — (Po(X0) — Po(X0))
o

< max
XpSx<x)+a

also goes to 0 because lim, _, ., || p,,— poll =0.
The second part of the theorem is proved.

Comparing part (2) of Theorem 3.6 and part (2) of Corollary 3.3, one
might ask if the condition f'(x)— py(x)=0 for all xe E(f— p,) can be
replaced by f'(x) — po(x) =0 for one x e E(f— p,). the following example
shows it cannot

ExamMpPLE 3. Let

1-2x, 0<x<3
f(x): 1 2
2x—D2x—3), l<x<l,
1, 0<x<?
u(x) =< linear,  2<x<3
3, 3<x<l,
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and U=span{u}. Then po(f) =0, Do(f)= /=1, and f'(1) = po(f)(1) =0,
but, for a <3,

1
D)~ Dulf) _ ga -
o = o
=i<ij:(l—2x+;oc> dx—1>
1

THEOREM 3.7. Let fe€ C[0, 1] and U be a Chebyshev space.

() If f and all ue U satisfy Lipschiz condition, then for any
poc eP(X.(f)’

| po—Poll < Ca,  for some constant C.

(2) If f'(x),u'(x)eC[0,1] for all ue U and f"(x) — po(x) =0 for all
xe E(f— po), then

lim 1P=—Poll _

a—0 o

0.

Proof. By the same reason given in the proof of Theorem 3.6, there
exists L >0 such that for any |x — y| <« and any pe Up<u<1 Polf)

/() =fW)I < and  |p(x) = p(y)| <o

By the strong uniqueness of the best uniform approximation, there exists
y=9(f) >0 such that

If = ull = f = poll +7 | po—ul

for any ue C[0, 1]. Also, (f— p.) < |f = palla </ = Polla < LS = Pol-
Now, replace u by p, and get

Ipo—pall <= (If = pall = I.f = Poll)

2L

< (Hf_pocH_h(f_prx))gT(x

R = R =
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For the second part of the theorem, we have

0.< lim HPa—Pnghm 1<|f—Pa|—|f—Po|>
o «—0 Y

x
o

a—0

1 1 Hf_pocH_Hf_pocHoc
— l1m

<
Y a—0 o

clim L[ (Ul = = o
a—>0 O Jx o

N (e 0 68 [ 9631 BN
X, SXS< X, +a o

where [(f = po)(x )l =/ —= pl.
This proves the second part of the theorem.
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